Novel method to assess axonal excitability using channelrhodopsin-based photoactivation.
نویسندگان
چکیده
Measuring the excitability of individual axons is complicated by the prohibitive difficulty in obtaining intracellular recordings. Here, we present an innovative methodology that enables local excitability to be measured anywhere in a channelrhodopsin (ChR2)-expressing neuron. The approach hinges on activating ChR2 in a spatially and temporally precise manner while recording the resulting spike train from a remote site. We validated this approach in primary afferent neurons (PANs). Initial encoding of somatosensory stimuli relies on transduction of the physical stimulus into a receptor potential and transformation of the receptor potential into a spike train; the transformation process depends on the excitability of the most distal PAN endings but, as explained above, is extraordinarily difficult to study in situ using traditional methods. Using ChR2-based photoactivation, we show 1) that excitability differs between the distal endings and more proximal portions of PAN axons, 2) that the transformation process differs between PANs, and 3) that the transformation process is directly affected by inflammation. Beyond presenting an innovative method by which to study axonal excitability, this study has validated its utility in helping to decipher the earliest stages of somatosensory encoding.
منابع مشابه
Activation of axonal receptors by GABA spillover increases somatic firing.
Axons can be depolarized by ionotropic receptors and transmit subthreshold depolarizations to the soma by passive electrical spread. This raises the possibility that axons and axonal receptors can participate in integration and firing in neurons. Previously, we have shown that exogenous GABA depolarizes cerebellar granule cell axons through local activation of GABA(A) receptors (GABA(A)Rs) and ...
متن کاملAcquired and genetic channelopathies: in vivo assessment of axonal excitability.
Neuronal or axonal ion channel function can be impaired or altered in a number of disorders, such as acquired (autoantibody-mediated, toxic, and metabolic) and genetic channelopathies, and even neurodegenerative (motor neuron disease) or inflammatory diseases (multiple sclerosis, immune-mediated neuropathies). When specific channels are affected, axonal/neuronal excitability primarily alters ac...
متن کاملA toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons.
In order to study the function of specific neural circuits, we generated UAS-Channelrhodopsin2 (ChR2) transgenic Drosophila and established a ChR2-based system that enables specific activation of targeted neurons in larval and adult fruit flies with blue light illumination, under the control of a newly designed light source that provides fully programmable stimulation patterns. We showed that s...
متن کاملNear-infrared photoactivatable control of Ca signaling and optogenetic immunomodulation
The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed ’Opto-CRAC’) that selectively and remotely controls Ca oscillations and Ca-responsive gene expression to reg...
متن کاملAltered nerve excitability properties in established diabetic neuropathy.
The underlying cause of diabetic neuropathy remains unclear, although pathological studies have suggested an ischaemic basis related to microangiopathy, possibly mediated through effects on the energy-dependent Na+/K+ pump. To investigate the pathophysiology of diabetic neuropathy, axonal excitability techniques were undertaken in 20 diabetic patients with neuropathy severity graded through a c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 113 7 شماره
صفحات -
تاریخ انتشار 2015